Sodium thiosulfate attenuates acute lung injury in mice.
نویسندگان
چکیده
BACKGROUND Acute lung injury is characterized by neutrophilic inflammation and increased lung permeability. Thiosulfate is a stable metabolite of hydrogen sulfide, a gaseous mediator that exerts antiinflammatory effects. Although sodium thiosulfate (STS) has been used as an antidote, the effect of STS on acute lung injury is unknown. The authors assessed the effects of STS on mice lung and vascular endothelial cells subjected to acute inflammation. METHODS Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide or subjected to cecal ligation and puncture with or without STS. Effects of STS on endothelial permeability and the production of inflammatory cytokines and reactive oxygen species were examined in cultured endothelial cells incubated with lipopolysaccharide or tumor necrosis factor-α. Levels of sulfide and sulfane sulfur were measured using novel fluorescence probes. RESULTS STS inhibited lipopolysaccharide-induced production of cytokines (interleukin-6 [pg/ml]; 313±164, lipopolysaccharide; 79±27, lipopolysaccharide+STS [n=10]), lung permeability, histologic lung injury, and nuclear factor-κB activation in the lung. STS also prevented up-regulation of interleukin-6 in the mouse lung subjected to cecal ligation and puncture. In endothelial cells, STS increased intracellular levels of sulfide and sulfane sulfur and inhibited lipopolysaccharide or tumor necrosis factor-α-induced production of cytokines and reactive oxygen species. The beneficial effects of STS were associated with attenuation of the lipopolysaccharide-induced nuclear factor-κB activation through the inhibition of tumor necrosis factor receptor-associated factor 6 ubiquitination. CONCLUSIONS STS exerts robust antiinflammatory effects in mice lung and vascular endothelium. The results suggest a therapeutic potential of STS in acute lung injury.
منابع مشابه
The Protective Effect of Sodium Ferulate and Oxymatrine Combination on Paraquat-induced Lung Injury
Experimental evidence suggested that sodium ferulate (SF) and oxymatrine (OMT) combination had synergistic anti-inflammatory and antioxidant effects. We hypothesized that SF and OMT combination treatment might have protective effects on paraquat-induced acute lung injury. In our study, the Swiss mice were randomly divided into seven groups, including control, paraquat (PQ), SF (6.2 mg/kg/day); ...
متن کاملThe Protective Effect of Sodium Ferulate and Oxymatrine Combination on Paraquat-induced Lung Injury
Experimental evidence suggested that sodium ferulate (SF) and oxymatrine (OMT) combination had synergistic anti-inflammatory and antioxidant effects. We hypothesized that SF and OMT combination treatment might have protective effects on paraquat-induced acute lung injury. In our study, the Swiss mice were randomly divided into seven groups, including control, paraquat (PQ), SF (6.2 mg/kg/day); ...
متن کاملLeptin resistance protects mice from hyperoxia-induced acute lung injury.
RATIONALE Human data suggest that the incidence of acute lung injury is reduced in patients with type II diabetes mellitus. However, the mechanisms by which diabetes confers protection from lung injury are unknown. OBJECTIVES To determine whether leptin resistance, which is seen in humans with diabetes, protects mice from hyperoxic lung injury. METHODS Wild-type (leptin responsive) and db/d...
متن کاملLow levels of tissue factor lead to alveolar haemorrhage, potentiating murine acute lung injury and oxidative stress.
BACKGROUND Systemic blockade of tissue factor (TF) attenuates acute lung injury (ALI) in animal models of sepsis but the effects of global TF deficiency are unknown. We used mice with complete knockout of mouse TF and low levels (∼1%) of human TF (LTF mice) to test the hypothesis that global TF deficiency attenuates lung inflammation in direct lung injury. METHODS LTF mice were treated with 1...
متن کاملToll-like receptor 4 monoclonal antibody attenuates lipopolysaccharide-induced acute lung injury in mice
Toll-like receptor 4 (TLR4) has an important role in the recognition of lipopolysaccharide (LPS) and in the activation of the inflammatory cascade. In the present study, the effect of TLR4 monoclonal antibody (mAb) on LPS-induced acute lung injury (ALI) was investigated in mice. A total of 45 male BALB/c mice were randomly divided into three groups, namely, the control (group C), sepsis (group ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Anesthesiology
دوره 121 6 شماره
صفحات -
تاریخ انتشار 2014